Search results for " Xanthophyll"

showing 3 items of 3 documents

Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?

2006

SUMMARY Carotenoid-based signals are thought to be indicators of male quality because they must be obtained from the diet and might thus indicate the ability of individuals to gather high-quality food. However, carotenoids are also known to have important physiological functions as immunoenhancers and antioxidants, and, as such, carotenoid-based sexual traits have also been suggested to reflect the health and antioxidant status of their bearers. This last idea is based on the hypothesis that carotenoids that are allocated to sexual signals are no longer available for the detoxification system. Recently, this hypothesis has been challenged on the grounds that the antioxidant activity is not …

0106 biological sciencesMaleAntioxidantPhysiologymedicine.medical_treatmentMESH: Random AllocationMESH : LuteinMESH: BeakXanthophylls01 natural sciencesAntioxidantsRandom Allocationpolycyclic compounds[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: AnimalsFood scienceMESH : FinchesCarotenoidMESH: MelatoninMelatoninchemistry.chemical_classification0303 health sciencesSex CharacteristicsbiologyMESH : MelatoninPigmentationMESH : PigmentationBeakfood and beveragesPasserinecarotenoïdsBiochemistryMESH : AntioxidantsMESH : XanthophyllsMESH: Finchesmedicine.drugMESH: Sex CharacteristicsoxidationMESH : Malefree radicalsmacromolecular substances[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAquatic ScienceMESH: Lutein010603 evolutionary biologyMESH: PigmentationMESH : Random AllocationMelatonin03 medical and health sciencessexual advertisementZeaxanthinsbiology.animalmedicineAnimalsMolecular BiologyZebra finchEcology Evolution Behavior and Systematics030304 developmental biologyMESH : Carotenoidsorganic chemicalsMESH: Antioxidantszebra finchLuteinMESH : Sex Characteristics[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH: XanthophyllsCarotenoidsMESH: Malebiological factorsMESH : BeakchemistryInsect ScienceMESH: CarotenoidsAnimal Science and ZoologyMESH : AnimalsFinches[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisThe Journal of experimental biology
researchProduct

Flashing lights affect the photophysiology and expression of carotenoid and lipid synthesis genes in Nannochloropsis gaditana

2022

Nannochloropsis gaditana is a promising microalga for biotechnology. One of the strategies to stimulate its full potential in metabolite production is exposure to flashing lights. Here, we report how N. gaditana adapts to different flashing light regimes (5, 50, and 500 Hz) by changing its cellular physiology and the relative expression of genes related to critical cellular functions. We analyzed the differential mRNA abundance of genes related to photosynthesis, nitrogen assimilation and biosynthesis of chlorophyll, carotenoids, lipids, fatty acids and starch. Analysis of photosynthetic efficiency and high mRNA abundance of photoprotection genes supported the inference that excess excitati…

Bio Process EngineeringFlashing lightsSettore ING-IND/25 - Impianti ChimiciXanthophyllFlashing lights Gene expression Lipids Nannochloropsis gaditana Photopigments XanthophyllBioengineeringGeneral MedicineLipidsPhotopigmentsApplied Microbiology and BiotechnologyGene expressionVLAGNannochloropsis gaditanaBiotechnology
researchProduct

Impact of Structural, Photochemical and Instrumental Effects on Leaf and Canopy Reflectance Variability in the 500–600 nm Range

2021

Current rapid technological improvement in optical radiometric instrumentation provides an opportunity to develop innovative measurements protocols where the remote quantification of the plant physiological status can be determined with higher accuracy. In this study, the leaf and canopy reflectance variability in the PRI spectral region (i.e., 500–600 nm) is quantified using different laboratory protocols that consider both instrumental and experimental set-up aspects, as well as canopy structural effects and vegetation photoprotection dynamics. First, we studied how an incorrect characterization of the at-target incoming radiance translated into an erroneous vegetation reflectance spectru…

spectroscopyreflectanceproximal sensing; spectroscopy; protocols; irradiance; reflectance; vegetation index; sun-/shade-adapted leaves; xanthophyll cycleirradianceScienceQGeneral Earth and Planetary Sciencesprotocolsproximal sensingvegetation indexRemote Sensing
researchProduct